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An inclusion at a bi-material elastic interface
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Abstract. This paper examines the problem of the axial displacement of a rigid circular disk-shaped inclusion
which is embedded at the interface between two bonded dissimilar isotropic elastic solids. The analysis focusses
on the determination of the axial stiffness of the embedded inclusion, which is evaluated by a numerical solution
of two coupled Fredholm integral equations of the second-kind derived from the reduced mixed boundary-value
problem for the interface. The results for the axial stiffness are also compared with certain ‘bounds’ which are
developed by imposing constraints on the variation of either the traction or the displacements at the interface.
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1. Introduction

Problems which deal with inclusions embedded in elastic media have occupied a prominent
place in the development of the theory of elasticity. Such solutions also have a wide range
of engineering applications including the study of stress amplification at inhomogeneities in
solids and in the evaluation of the effective properties of multiphase solids. Classical solutions
for spherical, spheroidal and ellipsoidal inhomogeneity problems developed by Goodier [1],
Dewey [2], Edwards [3] Eshelby [4], Lur’e [5] and others have been applied quite extensively
to the modelling of composite solids. The solutions to inclusion problems have also been
adopted for the modelling of anchoring mechanisms employed in geomechanical applications.
Studies by de Josselin de Jong [6], Kanwal and Sharma [7] Selvadurai [8] and Zureick [9]
dealing with three-dimensional inclusions which are subjected to axial forces have been used
to estimate the axial stiffness properties of anchors embedded in geomaterials. Comprehensive
accounts of developments pertaining to three-dimensional inclusion problems are given by
Willis [10], Walpole [11] and Mura [12, pp. 63–203], [13].

The disk inclusion or the penny-shaped inclusion is a particular limiting case of the general
problem of a three-dimensional inhomogeneity. Owing to the simplified geometry of the disk
inclusion problem it is possible to develop a variety of solutions which have applications
to mechanics of composite materials and geomechanics. The studies by Collins [14], Keer
[15] and Kassir and Sih [16] have developed solutions for rigid-disk inclusions with circular
and elliptical planforms which are embedded in elastic media and subjected to loads which
act directly on the inclusion. In an extensive series of studies (seee.g.Selvadurai [17]) the
work on the disk-inclusion problem has been extended to include the influence of material
anisotropy, inclusion flexibility, interaction of inclusions with cracks, influence of external
boundaries and the interaction of inclusions with nuclei of strain. Both the exact closed form
solutions and numerical results developed in connection with these problems have found ex-
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tensive application in the estimation of the stiffness characteristics of disk-shaped anchoring
mechanisms.

In this paper we consider the problem of a rigid-disk inclusion which is embedded in
bonded contact at the bonded interface between two isotropic elastic solids. From the per-
spective of applications in geomechanics, the inclusion can be regarded as a region of higher
stiffness which can be introduced at the interface due to migration of a bonding material such
as epoxy which is injected under pressure to create the anchoring mechanism. The analysis
focuses on the evaluation of the axial stiffness characteristics of the rigid disk inclusion and
in particular the evaluation of the influence of the mis-match in the elasticity properties of
the bonded elastic halfspace regions on the axial stiffness of the rigid disk inclusion. The
mathematical modelling of the problem is essentially reduced to the consideration of a mixed
boundary problem derived from the consideration of the continuity conditions both within
and exterior to the embedded inclusion region. When dealing with elastic bi-material regions
and bonded regions which are located at the surface of an elastic halfspace region it is well
known [18–20], [21, pp. 117–177] that the stress singularity at discontinuities can exhibit
oscillatory phenomena. In the modelling of the disk inclusion embedded in bonded contact
at the boundary between two bonded dissimilar halfspace regions, the stress singularity can
exhibit an oscillatory form, depending upon the manner in which the boundary configuration
of the inclusion is idealized. Consequently, in situations where exact stress distributions at
the inclusion boundary are of interest, it is necessary to perform the analysis by appeal to a
formulation based on the Hilbert problem where the stress singularity is accurately modelled
[22–24], [25, pp. 481–496]. This is particularly the case when the elastic modulus of one of
the bonded regions reduces to zero, in which case, the inclusion problem is identical to the
problem of a rigid punch which is bonded to the surface of a halfspace region. The stress
singularity at the boundary of the rigid punch will have an oscillatory form which depends
on Poisson’s ratio of the halfspace region. Since the primary focus of the analysis is on the
evaluation of ‘global results’ pertaining to the stiffness of the embedded rigid inclusion, the
contribution from the oscillatory form of the stress singularity is excluded from the analysis.
We will illustrate the rationale for this approach by examining the problem of a rigid punch in
adhesive contact with a halfspace region. The formulation of the problem is achieved by con-
sidering Love’s strain-function approach [26, pp. 274–276] for the solution of axisymmetric
problems in the classical theory of elasticity. The mixed boundary-value problem derived by
considering the continuity of tractions and displacements at the bonded interface is reduced
to the solution of a pair of Fredhom-type integrals of the second kind which are solved via a
numerical technique. The numerical scheme is used to develop results for the axial stiffness of
the disk inclusion. The numerical results are compared with the bounds for the axial stiffness
derived from a method proposed by Selvadurai [27] where the axial stiffness is calculated
by imposing either traction or displacement constraints at the interface between the bounded
halfspace regions.

2. The inclusion problem

We consider the axisymmetric elasticity problem related to an infinite space which is com-
posed of a bonded contact between two homogeneous isotropic elastic halfspace regions. A
rigid circular-disk inclusion embedded in bonded contact with the two halfspace regions is
subjected to an axial displacement1 in the z-direction (Figure 1). Since the disk inclusion
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Figure 1. Rigid-disk inclusion at a bi-material elastic interface.

problem exhibits axial symmetry, it is convenient to use Love’s strain function approach for
the formulation of the problem. It can be shown [26, pp. 274–276] that the solution to the
displacement equations of equilibrium can be expressed in terms of a single function8(i)(r, z)

which satisfies

∇2∇28(i)(r, z) = 0, (1)

where

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
(2)

is the axisymmetric form of Laplace’s operator and the superscriptsi refer to the halfspace
regions 1(z > 0) and 2(z 6 0) which are bonded at the planez = 0.

The displacement and stress components in the elastic media can be evaluated in terms of
the strain potentials8(i) (r, z); we have

2Giu
(i)
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whereGi andνi (i = 1,2) are the shear moduli and Poisson’s ratios of the respective halfspace
regions. The boundary conditions governing the mixed boundary-value problem related to the
bonded interfacez = 0 are as follows;

u(1)z (r,0) = 1; 06 r 6 a, (9)

u(2)z (r,0) = 1; 06 r 6 a, (10)

u(1)r (r,0) = 0; 06 r 6 a, (11)

u(2)r (r,0) = 0; 06 r 6 a, (12)

u(1)z (r,0) = u(2)z (r,0); a 6 r <∞, (13)

u(1)r (r,0) = u(2)r (r,0); a 6 r <∞, (14)

σ (1)zz (r,0) = σ (2)zz (r,0); a < r <∞, (15)

σ (1)rz (r,0) = σ (2)rz (r,0); a < r <∞. (16)

Owing to the axisymmetric nature of the inclusion problem, it is convenient to adopt a solution
based on the Hankel transforms development of the governing partial differential equation
(seee.g.Sneddon [28, pp. 327–328], [29, Chapter 4]). The relevant solutions applicable to the
halfspace regionsz > 0 andz 6 0 can be written as

8(1)(r, z) =
∫ ∞

0
ξ [A(ξ)+ B(ξ)z]e−ξzJ0(ξr)dξ (17)

and

8(2)(r, z) =
∫ ∞

0
ξ [C(ξ)+D(ξ)z]eξzJ0(ξr)dξ, (18)

whereA(ξ), B(ξ)... etc., are arbitrary functions. The corresponding displacement and stress
components applicable to the regions 1 and 2 can be obtained from (17) and (18) and the
expressions (3–8). We have

2G1u
(1)
r (r,0) =

∫ ∞
0
ξ2[−ξA(ξ)+ B(ξ)]J1(ξr)dξ, (19)

2G1u
(1)
z (r,0) = −

∫ ∞
0
ξ2[ξA(ξ)+ 2(1− 2ν1)B(ξ)]J0(ξr)dξ, (20)

σ (1)zz (r, z) =
∫ ∞

0
ξ3[ξA(ξ)+ 2(1− 2ν1)B(ξ)]J0(ξr)dξ, (21)

σ (1)rz (r,0) =
∫ ∞

0
ξ3[ξA(ξ)− 2ν1B(ξ)]J1(ξr)dξ. (22)
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and

2G2u
(2)
r (r,0) =

∫ ∞
0
ξ2[ξC(ξ)+D(ξ)]J1(ξr)dξ, (23)

2G2u
(2)
z (r,0) = −

∫ ∞
0
ξ2[ξC(ξ)− 2(1− ν2)D(ξ)]J0(ξr)dξ, (24)

σ (2)zz (r,0) =
∫ ∞

0
ξ3[−ξC(ξ)+ (1− 2ν2)D(ξ)]J0(ξr)dξ, (25)

σ (2)rz (r,0) =
∫ ∞

0
ξ3[ξC(ξ)+ 2ν2D(ξ)]J1(ξr)dξ. (26)

Using (19) to (26), we can reduce the boundary conditions (9–16) to the following system of
integral equations∫ ∞

0
[L(ξ){R1+ 2(1− 2ν1)P1} +M(ξ){R2+ 2(1− 2ν1)P2}

+N(ξ){R3+ 2(1− 2ν1)P3} +Q(ξ){R4+ 2(1− 2ν1)P4}]J0(ξr)dξ

= −2G11; 06 r 6 a, (27)∫ ∞
0
[L(ξ){α +�} +M(ξ){β −�} +N(ξ){γ +�}

+Q{δ −�}]J0(ξr)dξ = −2G21; 06 r 6 a, (28)∫ ∞
0
[L(ξ){P1− R1} +M(ξ){P2− R2} + N(ξ){P3− R3}

+Q(ξ){P4− R4}]J1(ξr)dξ = 0; 06 r 6 a, (29)∫ ∞
0
[L(ξ){α − ψ} +M(ξ){β + ψ} +N(ξ){γ − ψ}

+Q(ξ){δ + ψ}]J1(ξr)dξ = 0; 06 r 6 a, (30)∫ ∞
0
M(ξ)J1(ξr)dξ = 0; a < r <∞, (31)

∫ ∞
0
ξN(ξ)J0(ξr)dξ = 0; a < r <∞, (32)

∫ ∞
0
ξQ(ξ)J0(ξr)dξ = 0; a < r <∞, (33)

where the substitution functionsL(ξ), M(ξ), N(ξ) andP(ξ) can be related toA(ξ), B(ξ)
through the relationships

ξ3A(ξ) = R1L(ξ)+ R2M(ξ)+ R3N(ξ)+ R4Q(ξ), (34)
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ξ2B(ξ) = P1L(ξ)+ P2M(ξ)+ P3N(ξ)+ P4Q(ξ), (35)

ξ3C(ξ) = αL(ξ)+ βM(ξ)+ γN(ξ)+ δQ(ξ), (36)

ξ2D(ξ) = ψ[M(ξ)+Q(ξ)− L(ξ)+N(ξ)] (37)

and the constantsα, β, . . . , P1, P2, . . . , R1, R2, . . . etc. depend only on the elastic constants
of the bi-material region and explicit expressions are given in Appendix A. The use of a
Love strain-function formulation of the problem, unfortunately results in a rather awkward set
of constants characterizing the influence of the bimaterial parameters. It is quite likely that
other representations such as the Neuber–Papkovich formulation of the solution of elasticity
problems in terms of harmonic functions could result in more managable forms of the material
parameter combinations. The results given in Appendix A are, however, mathematically cor-
rect. They could, of course, be further reduced by the use of symbolic manipulation schemes
such asMathematicar Mapler. Since the solution scheme ultimately involves numerical
procedures, the specific combinations of the material parameters can be chosen in the present-
ation of numerical results associated with the problem. The functionsL(ξ), M(ξ), . . . etc.,
can in turn be expressed in the forms

L(ξ) = 1

G2
[ξ2G1{ξC(ξ)− 2(1− 2ν2)D(ξ)} − ξ2G2{ξA(ξ)+ 2(1− 2ν1)B(ξ)}], (38)

M(ξ) = 1

G2
[ξ2G1{ξC(ξ)+D(ξ)} − ξ2G2{−ξA(ξ)+ B(ξ)}], (39)

N(ξ) = ξ2{ξA(ξ)+ (1− 2ν1)B(ξ)} + ξ2{ξC(ξ)− (1− 2ν2)D(ξ)}, (40)

Q(ξ) = ξ2{−ξA(ξ)+ 2ν1B(ξ)} + ξ2{ξC(ξ)+ 2ν2D(ξ)} (41)

The Equations (31), (32) and (33) can be satisfied if we assume representations of the form

M(ξ) = −21G2

∫ a

0
uϕ2(u)J1(ξu)du, (42)

N(ξ) = −21G1

∫ a

0
ϕ3(u) cos(ξu)du, (43)

Q(ξ) = −21G1

∫ a

0
ϕ4(u) sin(ξu)du, (44)

whereϕ2(u), ϕ3(u) andϕ4(u) are unknown functions. Substituting the values ofA(ξ), B(ξ),
C(ξ) andD(ξ) defined by (34) to (37) into (38) we note that

L(ξ) ≡ 0. (45)

The Equations (27), (28) and (29) now yield the following system of coupled integral equa-
tions for the functionsϕ2, ϕ3 andϕ4; i.e.

G2{R2+ 2(1− 2ν1)P2}
G1

ϕ2(r)+ {R3+ 2(1− 2ν1)P3}
∫ a

0

ϕ3(u)H(r − t)du√
r2− u2

+{R4+ 2(1− 2ν1)P4}
∫ a

0

ϕ4(u)H(u− r)du√
u2− r2

= 1; 06 r 6 a, (46)
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{P4− R4}
∫ a

0

tϕ4(t)H(r − t)dt√
r2 − t2 = −G2{P2− R2}rϕ2(r)

G1

−{P3− R3}
∫ a

0
ϕ3(t)

[
1− tH (t − r)√

t2 − r2

]
dt; 0< r < a, (47)

{δ + ψ}
∫ a

0

tϕ4(t)H(r − t)dt√
r2− t2 = −G2

G1
{β + ψ}rϕ2((r)

−{γ − ψ}
∫ a

0

[
1− tH (t − r)√

t2− r2

]
ϕ3(t)dt; 0< r < a (48)

whereH(x) is the Heaviside unit function. The analysis of the disk-inclusion embedded at the
bi-material elastic interface and subjected to the rigid displacement1 along thez-direction
is now reduced to the solution of the three integral Equations (46–48). These integral equa-
tions are not amenable to exact solution and their numerical evaluation will be discussed in a
subsequent section.

A result of importance to engineering applications involves the evaluation of the force-
displacement relationship for the rigid-disk inclusion. The forceP required to induce the
rigid displacement1 can be evaluated by considering the tractions acting on the faces of the
inclusion in contact with the two halfspace regions. We have

P = 2π
∫ a

0
[σ (1)zz (r,0) − σ (2)zz (r,0)]r dr (49)

From the result (32) we have

σ (1)zz (r,0)− σ (2)zz (r,0) =
∫ ∞

0
ξN(ξ)J0(ξr)dξ. (50)

From (50) and (51) we obtain

P = 2π
∫ a

0

[
∂

∂r

∫ ∞
0
ξN(ξ)J1(ξr)dξ

]
dr. (51)

Using the result (43) in (51) we have

P = −4πG11

∫ a

0
ϕ3(t)dt. (52)

The numerical solution of the integral Equations (46) to (48) can be directly utilized to
evaluate the load-displacement relationship for the embedded rigid-disk inclusion.

3. The numerical evaluation of the governing integral equations

The structure of the governing integral equations is such that they do not appear to be amenable
to exact solution. As a result it is necessary to adopt a numerical scheme to generate the
relevant results. A variety of techniques have been proposed for the numerical solution of
coupled systems of integral equations of the general type described by (46) to (48). These
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are fully documented by Atkinson [30, p. 230], Baker [31, Chapters 4 and 5] and Delves and
Mohamed [32, Chapters 4, 7, 10]. We write the coupled integral equations (46) to (48) in the
generalized Fredholm forms

C12ϕ2(r)+ C13

∫ a

0
ϕ3(t)K13(t, r)dt + C14

∫ a

0
ϕ4(t)K14(t, r)dt = 1; 06 r 6 a (53)

C32rϕ2(r)+ C33

∫ a

0
ϕ3(t)K33(t, r)dt + C34

∫ a

0
ϕ4(t)K34(t, r)dt = 0; 06 r 6 a, (54)

C42rϕ2(r)+ C43

∫ a

0
ϕ3(t)K43(t, r)dt + C44

∫ a

0
ϕ4(t)K44(t, r)dt = 0; 06 r 6 a, (55)

where the constantsC12, C13 etc. and the kernel functionsK13,K14, . . . etc., are given by

C12 = G2

G1
[R2+ 2(1− 2ν1)P2], C13 = [R3+ 2(1− 2ν1)P3],

C14 = [R4+ 2(1− 2ν1)P4],
(56)

C32 = G2

G1
(P2− R2); C33 = (P3− R3), C34 = (P4− R4),

C42 = G2

G1
[β +�), C43 = [γ −�], C44 = [δ +�]

and

K13(t, r) = H(r − t)√
r2 − t2 , K14(r, t) = H(t − r)√

t2− r2
,

K33(t, r) =
[
1− tH (r − t)√

t2− r2

]
, K34(t, r) = tH (t − r)√

r2 − t2 , (57)

K43(t, r) = K33(r, t); K44(t, r) = K34(t, r).

We can eliminateϕ2(r) between the Equations (53), (54) and (55) and obtain a system of
coupled Fredholm-type equations in terms ofϕ3(r) andϕ4(r); i.e.∫ a

0
ϕ3(t){C32C13rK13(t, r) − C33C12K33(t, r)} dt

+
∫ a

0
ϕ4(t){C32C14rK14(t, r) − C34C12K34(t, r)} dt = C32r (58)

and∫ a

0
ϕ3(t){C42C13rK13(t, r) − C43C12K43(t, r)} dt

+
∫ a

0
ϕ4(t){C42C14rK13(t, r) − C44C12K44(t, r)} dt = C42r. (59)
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In order to solve this coupled system of integral equations numerically, the interval[0, a] is
divided intoN segments with end points[tn,tn+1] wheretn = (n−1)a/N . For theN locations
of rn, where

rn =
(
tn + tn+1

2

)
, (60)

the discretized system corresponding to (57) and (58) can be written as

[A`m]{Xm} = {B`}, (61)

where`,m = 1,2, . . . , N . The matrix[A`m] is a(2× 2) sub-matrix which can be written as

[A`m] =
[
C32C13r`I1− C33C12(I3− I5) C32C14r`I2− C34C12I4

C42C13r`I1− C43C12(I3− I5) C42C14r`I2− C44C12I4

]
, (62)

the sub-vector{B`} is given by

{B`} =
{
C32r`

C42r`

}
(63)

and the unknown matrix is

{Xm} =
{
ϕ3(rm)

ϕ4(rm)

}
. (64)

The integral functionsIk (k = 1,2, . . . ,5) defined in (62) are given by

I1(r`, tm, tm+1) =



0; 0< r` < tm,[
π

2
− sin−1

(
tm

r`

)]
; tm < r` < tm+1,[

sin−1

(
tm+1

r`

)
− sin−1

(
tm

r`

)]
; tm < r` < a,

(65)

I2(r`, tm, tm+1)

=



{
log |tm+1 +

√
t2m+1− r2

` | − log |tm +
√
t2m − r2

` |
}
; 0< r` < tm,{

log |tm+1 +
√
t2m+1 − r2

` | − log(r`)
}
; tm < r` < tm+1,

0; tm+1 < r` < a,

(66)

I3(tm, tm+1) = (tm+1 − tm), (67)
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I4 =



0; 0< r` < tm,√
r2
` − t2m; tm < r` < tm+1,{√
r2
` − t2m −

√
r2
` − t2m+1

}
; tm+1 < r` < a,

(68)

and

I5 =



{√
t2m+1 − r2

` −
√
t2m − r2

`

}
; 0< r` < tm,√

t2m+1 − r2
` ; tm < r` < tm+1,

0; tm+1 < r` < a.

(69)

The numerical solution of the coupled integral Equations (58) and (59) is essentially reduced
to the solution of the matrix equation (61) where the value ofN is changed to achieve a desired
accuracy. The forms of the kernel functions are such that a Gaussian quadrature scheme can
be used quite effectively and forN = 20, the numerical results for the associated halfspace
solutions are obtained to within an accuracy of 0·06%.

4. Numerical results

Prior to the presentation of results for the stiffness of the rigid-disk inclusion derived via the
numerical scheme described previously, it is instructive to assess the degree of error introduced
by the omission of the oscillatory form of the singularity which will occur at the boundary of
the rigid-disk inclusion especially when the elastic modulus of one of the regions approaches
zero. To illustrate this, we consider the problem of a rigid circular punch of radiusa which is
bonded to the surface of a halfspace region. It is subjected to an axial forcePB which induces
a displacement1B in the z-direction. The mixed boundary conditions associated with this
indentation problem are

uz(r,0) = 1B; 06 r 6 a, (70)

ur(r,0) = 0; 06 r 6 a, (71)

σzz(r,0) = 0; a < r <∞, (72)

σrz(r,0) = 0; a < r <∞. (73)

The solution of this mixed boundary-value problem was presented by Ufliand [22] and further
expositions of the method of solution are given by Mossakovskii [23] and Gladwell [24].
The result of particular interest concerns the load-displacement behaviour of the rigid circular
punch, which can be evaluated in exact closed form. Using the formulation based on the
Hilbert problem, we can evaluate this result in exact closed form as follows:

PB

4G1Ba
= `n(3− 4ν)

1− 2ν
, (74)
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Table 1. Axial stiffness of a rigid circular indentor bonded to a halfspace
region.

PB/(8G1Ba)

Poisson’s ratio Results based on the Results based on the % Error

ν Hilbert-problem Fredholm integral-

approach -equation approach

0 0·5490 0·5493 0·0546

0·1 0·5970 0·5972 0·0335

0·2 0·6569 0·6570 0·0152

0·3 0·7346 0·7347 0·0136

0·4 0·8411 0·8412 0·0119

0·5 1·0000 1·0000 0

whereG and ν are respectively the linear elastic shear modulus and Poisson’s ratio of the
halfspace region. An alternative approach is to use the basic methodologies outlined previ-
ously and to reduce the problem to the solution of a single Fredholm integral equation of
the second kind. This integral equation can be solved numerically to generate the equivalent
results for the load-displacement relationship for the bonded circular punch, albeit without the
implementation of the oscillatory form of the stress singularity at the boundary of the punch.
The comparison between the result (74) and the results obtained from the solution of the
Fredholm integral equation is presented in Table 1. It is evident that the discrepancy between
the two sets of results is within limits acceptable for engineering applications of the results.

To further aid the presentation of the results we cite here a ‘bounding technique’ for the cal-
culation of the stiffness of inclusions embedded at bi-material interface regions first proposed
by Selvadurai [27]. The bounding technique involves the application of either displacement
constraints or traction constraints at the interface between the two bi-material elastic halfspace
regions. In the bound involving the kinematic constraint, it is explicitly assumed that the inter-
face is inextensible in the plane of the inclusion and continuity of displacements is maintained
normal to the interface between the bonded bi-material elastic halfspace regions. In develop-
ing the bound involving traction constraints, it is assumed that the inclusion is embedded
in smooth contact at the interface between two pre-compressed elastic halfspace regions.
The precompression normal to the smooth interface is assumed to be sufficient to maintain
continuity of displacement normal to the bi-material boundary. Selvadurai [27] applied this
bounding to technique to develop solutions to the problem of an elliptical disk inclusion which
was embedded in bonded contact between two dissimilar transversely isotropic elastic solids.
These results give the following bounds for the axial stiffness of a rigid circular inclusion
which is embedded in bonded contact with two isotropic elastic halfspace regions,i.e.

{
0(1− ν2)+ (1− ν1)

2(1− ν1)(1− ν2)(1+ 0)
}
6 P

8(G1+G2)1a

6 2[0(1− ν1)(3− 4ν2)+ (1− ν2)(3− 4ν1)]
(3− 4ν1)(3− 4ν2)(1+ 0) , (75)
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Figure 2. Normalized axial stiffness of the disk inclusion.

Figure 3. Normalized axial stiffness of the disk inclusion.

where

0 = G1

G2
. (76)

It may be noted that in the limit of material incompressibility for both halfspace regions (i.e.
ν1 = ν2 = 1

2), both bounds converge to the exact result

P = 8(G1 +G2)1a. (77)

The numerical procedure outlined in the previous section was used to develop estimates for
the axial stiffness of the rigid disk inclusion. The numerical results can be presented for a
variety of combinations ofν1, ν2 and the modular ratio0. The Figures 2 to 6 illustrate the
variation inP , where

P = P

8(G1 +G2)1a
(78)

for various choices ofν1, ν2 and0. It is evident that the numerical estimates are consistent
with the results derived via the bounding technique. In connection with applications to prob-
lems in geomechanics, the limit of material incompressibility describes the behaviour of the
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Figure 4. Normalized axial stiffness of the disk inclusion.

Figure 5. Normalized axial stiffness of the disk inclusion.

mechanical response of fluid saturated poroelastic geomaterials at the commencement of the
pore fluid diffusion process, and usually referred to as an ‘undrained response’ [33-34], [35,
pp. 33–45]. In these circumstances the mechanical response of the axial load displacement
behaviour of the inclusion can be conveniently derived from result (77).

5. Concluding remarks

The axial load-displacement response of a rigid-disk inclusion embedded in bonded contact
at the bonded interface between two dissimilar elastic solids can be examined as a mixed
boundary-value problem derived by considering the displacement conditions within the inclu-
sion region and continuity conditions exterior to the inclusion region. At the boundary of the
inclusion–bi-material region interface the stress singularity has to be defined by considering
the local geometry. In particular, the stress singularity should exhibit the transition from a
regular 1/

√
r type for identical materials to the oscillatory form when the elastic modulus of

one of the materials reduces to zero. The developments presented in this paper are primarily
focussed on procedures which can be used to evaluate the load-displacement behaviour of the
embedded rigid-disk inclusion. It is shown that when a regular 1/

√
r type stress singularity

is incorporated at the inclusion boundary, the problem is reduced to the solution of a pair of
Fredholm integral equations of the second kind which can be solved in a numerical fashion to
develop the load-displacement relationship of the inclusion. Furthermore, it is shown that the
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Figure 6. Normalized axial stiffness of the disk inclusion.

oscillatory form of the stress singularity at the boundary of the bonded rigid inclusion has no
appreciable contribution to a global result such as a load-displacement relationship. Compar-
isons between a Hilbert-problem approach and regular Fredholm integral-equation approach
for a bonded punch problem for a halfspace indicates that the maximum error between the
exact solution which incorporates an oscillatory stress singularity and the approximate result
is less than 0·0546%. The approaches converge to the same result asνi → 1

2. The accuracy of
the numerical scheme is also verified by comparison with certain bounds which have been de-
veloped by incorporating either kinematic or mechanical constraints at the bonded bi-material
interface.

Appendix A

The substitution constantsα, β, . . . , P1, P2, . . . etc. are defined as follows:

α = G2

[2G1 + 2G2(3− 4ν1)]
[
1− (1− 4ν2)G1−G2(3− 4ν1)(4ν2− 1)

(3G1+G2 − 4G1ν2)

]
,

β = G2

[2G1 + 2G2(3− 4ν1)]
[
1+ (1− 4ν2)G1 −G2(3− 4ν1)(4ν2− 1)

(3G1+G2− 4G1ν2)

]
,

γ = 1

[2G1+ 2(3− 4ν1)G2]
[
(3− 4ν1)G2− G2{(1− 4ν2)G1−G2(3− 4ν1)(4ν2− 1)}

(3G1+G2 − 4G1ν2)

]
,

δ = 1

[2G1 + 2(3− 4ν1)G2]
[
(3− 4ν1)G2+ G2{(1− 4ν2)G1−G2(3− 4ν1)(4ν2− 1)}

(3G1 +G2− 4G1ν2)

]
,

P1 = 1

G2(1− 2ν1)

[
α(G1+G2)−G2+ G2(1− 2ν2)(2G1+G2)

(3G1 +G2− 4G1ν2)

]
,

P2 = 1

G2(1− 2ν1)

[
β(G1+G2)− G2(1− 2ν2)(2G1 +G2)

(3G1 +G2− 4G1ν2)

]
,

P3 = 1

G2(1− 2ν1)

[
γ (G1+G2)−G2

G2(1− 2ν2)(2G1+G2)

(3G1+G2 − 4G1ν2)

]
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P4 = 1

G2(1− 2ν1)

[
δ(G1+G2)− G2(1− 2ν2)(2G1+G2)

(3G1+G2− 4G1ν2)

]
,

R1 = 1

G2

[
αG1+ 2G1G2(1− 2ν2)

(3G1 +G2− 4ν2G1)
− 2(1− 2ν1)P1G2

]
,

R2 = 1

G2

[
βG1 − 2G1G2(1− 2ν2)

(3G1 +G2− 4ν2G1)
− 2(1− 2ν1)P2G2

]
,

R3 = 1

G2

[
γG1+ 2G1G2(1− 2ν2)

(3G1+G2 − 4ν2G1)
− 2(1− 2ν1)P3G2

]
,

R4 = 1

G2

[
δG1− 2G1G2(1− 2ν2)

(3G1 +G2− 4ν2G1)
− 2(1− 2ν1)P4G2

]
,

� = 2(1− 2ν2)G2

(3G1 +G2− 4ν2G1)
, ψ = G2

(3G1+G2− 4ν2G1)
,
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